Нащупать тропинку в "рай" консенсуса
(в порядке реализации программы Элементарной диалектической логики)
Нередко, посетители Философского штурма задают вполне резонный вопрос, как на практике применить Элементарную диалектическую логику.
С учетом того, что ЭДЛ - это логика совместного рассуждения, то, как и в случае плавания, нужно просто окунуться в стихию совместного рассуждения и начать аргументировать свои заявления.
Пять исходов:
1. Истинно А (признано собеседниками).
2. Истинно неА (признано собеседниками)
3. Истинно S (третье, синтез или консенсус)
4. Дискуссия отложена для пополнения базы аргументов.
5. Дискуссия потерпела крах (каждый остался при своем мнении).
Примечание. Признание обоими собеседниками верности тезиса или антитезиса, полученное в ходе скрупулезного исследования, анализа насущной проблемы, тоже есть ни что иное как синтез (консенсус), достигнутый совместным рассуждением.
Живой пример:
axby1, 9 Ноябрь, 2018 - 21:15, ссылка
[То, что Вы сейчас применили на практике, называется "Уйти от ответа по существу"]. Очевидно дело здесь в том что мы по-разному понимаем "вопрос по существу"
Уточню - не вопроса, а ответа на уже сформулированную просьбу.
На рабочий стол дискуссии в порядке совместного рассуждения выложены три дефиниции логики*: определение Б1 (от Болдачева) определение А1 (от Анисова) и мое определение S2 (с претензией на синтез).
"Ответить по существу" означало, хотя бы выложить собственную альтернативную дефиницию, как минимум. Как максимум - рассмотреть уже предъявленные дефиниции для согласования общего понимания ключевого термина "логика".
С тем, чтобы затем по порядку от термина "логика" двигаться в совместном рассуждении к термину "факт" в логике.
_______________________
*) Речь идет о следующих трех дефинициях:
Определение Б1 (от Болдачева).
boldachev, 7 Ноябрь, 2018 - 14:43, ссылка
"Логика - это теоретическая дисциплина, предметом которой являются законы и правила установления истинности выражений (суждений, высказываний) естественного и других языков".
Определение А1 (от Анисова)
"итоговое определение предмета логики: логика - это теоретическая наука о правильных рассуждениях", (Анисов А.М. Современная логика. - М., ИФ РАН. 2002. - С.6).
Определение S2 (синтезированное).
Логика - это теоретическая дисциплина, предметом которой являются законы и правила установления истинности выражений (суждений, умозаключений), корректности вопросов, оценок и императивов естественного и других языков в индивидуальных и совместных рассуждениях.
--
Грачев Михаил Петрович.
Москва, 10 ноября 2018 г.
Комментарии
Обращаясь к теореме "Диалектическая логика как она есть"
(Интегральный алгоритм рассуждения)
Грачев.
Спартак.
Согласен. Действительно, каждый собеседник "я" в своем "простом рассуждении (цепочке)" рассуждает именно так: без противоречий (в идеале). Если что, то другой собеседник укажет на внутреннее противоречие у тебя.
Так ведь и оппонент, внешне противоречащий Вам, тоже рассуждает без противоречий (в идеале). И что в итоге? В итоге складывается бесконечная цепочка из "да - нет", "нет - да", "да - нет".
Как выйти из этого замкнутого круга (или, как говорит Дмитрий и Николаева, - зацикливания)?
На мой взгляд, требуемое эффективное средство, на основе тысячелетней практики предлагает Элементарная диалектическая логика. Концентрированно это выражено в схеме Интегрального алгоритма совместного рассуждения:
То есть, в проблемной ситуации, когда сталкиваются противоположные интересы (политические, научные, религиозные, бытовые, гражданско-правовые отношения собственности) и которые выливаются в прямое столкновение в речевом контакте (в дискуссии-полемике, дебатах, в суде), в случае обоюдного желания прийти к какому-то консенсусу необходимо провести аргументированное совместное рассуждение с включенным в него противоречием.
Но для этого всегда следует иметь ввиду, что собеседник по умолчанию свои высказывания тоже считает истинными, поэтому для выхода из диалогического тупика в промежутках между "да - нет", "нет - да" следует наводить мосты между противоположными высказываниями в виде вопросов, оценок, императивов. А не только генерировать одни лишь возражения (хотя бы они и были так же необходимыми).
--
О консенсусе, софизме и истинности языковых выражений
Если кто-то считает, что достигнуть консенсуса легко, тот заблуждается. Число дефиниций логики на рабочем столе дискуссии разрастается.
Было три дефиниции "логики":
Определение Б1 (от Болдачева).
boldachev, 7 Ноябрь, 2018 - 14:43, ссылка
"Логика - это теоретическая дисциплина, предметом которой являются законы и правила установления истинности выражений (суждений, высказываний) естественного и других языков".
Определение А1 (от Анисова)
"итоговое определение предмета логики: логика - это теоретическая наука о правильных рассуждениях", (Анисов А.М. Современная логика. - М., ИФ РАН. 2002. - С.6).
Определение S2 (синтезированное).
Логика - это теоретическая дисциплина, предметом которой являются законы и правила установления истинности выражений (суждений, умозаключений), корректности вопросов, оценок и императивов естественного и других языков в индивидуальных и совместных рассуждениях.
Плюс две дефиниции:
Определение Б3 (от Болдачева)
Логика - это теоретическая дисциплина, предметом которой являются законы и правила установления истинности выражений естественного и других языков (boldachev, 10 Ноябрь, 2018 - 21:45, ссылка).
Определение К1 (от Корнака)
логика, или наука о понятиях, есть система, изучающая качественные(категорические) отношения между вещами (Корнак7, 10 Ноябрь, 2018 - 15:28, ссылка).
В нашем случае расхождение носит концептуальный характер. Вот стенограмма развития совместного рассуждения
— А. Болдачев (А.В.). Это [определение Б3. - M.G.] предельно строгое и точное определение, фиксирующее предмет познавательной дисциплины, метод познания и предмет познания.
— М. Грачев (M.G.). Какое же оно "строгое и точное", если в естественном языке существуют выражения (например, вопросительные предложения), которые принципиально не допускают установления истинности?
— А.В. Ну, да, [одно из правил установления истинности выражений языка (1)] звучит так: вопросительные предложения не имеют истинностного значения.
— M.G. Это не правило, а софизм, сам себе выписывающий индульгенцию в случае нарушения требования "строгости и точности" формулировки.
— А.В. Не понял. Вот то, что вы написали: [в естественном языке существуют выражения (например, вопросительные предложения), которые принципиально не допускают установления истинности]. Это не правило, а софизм? Ну тогда зачем вообще упоминать этот софизм?
— M.G. У меня речь шла о Вашей фразе "одно из правил установления истинности выражений " (1). Именно в фразе (1) замаскирован софизм. А не о моем утверждении "вопросительные предложения не имеют истинностного значения", которое и правилом-то не является, а обычным логико-лингвистическим фактом.
— А.В. А если по существу. То есть вы на полном серьезе утверждаете, что среди правил установления истинности выражений не должно быть таковых, которые ограничивают множество выражений, которым может быть приписана истинность, так? То есть логическая система не должна содержать однозначные критерии каким выражениям можно приписывать истинность, а каким нет? То есть фраза "вопросительные предложения не имеют истинностного значения" не является правилом, так?
— M.G. В математической логике особо не заморачиваются поиском критериев "каким выражениям можно приписывать истинность, а каким нет", а на бытовом уровне просто отбрасывают вопросы из логического дискурса:
"Предложения, выражающие определенные суждения, называются высказываниями. Они характеризуются тем, что могут быть истинными и ложными, и этим отличаются, например, от повелительных и вопросительных предложений" (В.А.Успенский, Н.К.Верещагин, В.Е.Плиско. Вводный курс математической логики. - М., 2002. - С.19).
То есть у математических логиков в логическом дискурсе присутствуют высказывания одного и только одного вида - суждения.
Поскольку вопросы находятся за бортом логического дискурса, постольку, когда речь заходит об установлении истинности языковых выражений (высказываний, предложений), то имеют ввиду конкретные суждения (повествовательные предложения). К ним-то и при меняют критерии истинности.
Я подозреваю, что в данном случае мы рассуждаем о разных "истинностях".
Одна истинность объектная - это истинность конкретных суждений "ложно/истинно". И вторая истинность метатеоретическая.
Хотя метатеоретическая и относится к истинности высказываний. Но не к конкретным суждениям, а к критерию выделения вопросов, оценок и императивов в отдельный класс языковых выражений, отличных от суждений (повествовательных предложений).
Болдачев будучи продвинутым философом в своей трактовке (интерпретации) определения Б3 уловил эту метатеритическую составляющую "истинности выражений языка".
Увы, математическим логикам "метаистинность" не нужна, судя по определению высказывания логиками Успенским, Верещагиным и Плиско. Им достаточно обычного различения суждений и вопросов как логико-лингвистического факта. Для них суждения - это высказывания, а вопросы и повеления не высказывания. Опять же, потому что последние не истинные и не ложные.
Что касается софизма, то он хорошо работает в теореме Гёделя. Я имею ввиду софизм под названием "парадокс Лжеца". Но это уже другая история.
--
Грачев, я не увидел в данном тексте, что обсуждение разделилось на две составляющие.
Логика как научная область и логика как понятие.
Второе определение логике как понятию было дано Успенским. Болдачев с ним согласился, кое-что поправив. Так что здесь, можно сказать, консенсус.
Определение Б3 (от Болдачева)
Логика - это теоретическая дисциплина, предметом которой являются законы и правила установления истинности выражений естественного и других языков (boldachev, 10 Ноябрь, 2018 - 21:45, ссылка).
В определении Б3 присутствуют оба компонента:
- логика как научная область (упомянута научная дисциплин) и
- логика как понятие (предметом логики являются законы и правила установления истинности выражений естественного и других языков).
Определение Б4 (от Болдачева)
"Логика - это система представлений и правил, позволяющих делать заключение об истинности нового суждения исходя из допущения истинности множества существующих суждений" (boldachev, 10 Ноябрь, 2018 - 21:45, ссылка).
--
Это не определение понятия логики, о обозначение предметов, которыми она занимается
Пример.
Математика - наука о числах. Здесь также нет определения математики. Только ее предмета изучения.
Нельзя так определять понятия. В понятии должны заключаться ОБЩИЕ свойства чего-либо.
Логика - умственное действие, направленное на выявление закономерных отношений в разных высказываниях и поступках. Коряво, есть к чему придраться, но смысл, надеюсь, донес.
Так уже лучше.
В определении Б4 речь тоже идет о предмете логики.
[Логика - это теоретическая дисциплина, предметом которой является система представлений и правил, позволяющих делать заключение об истинности нового суждения исходя из допущения истинности множества существующих суждений].
--
Окончательный вариант формулировки определения логики УПД
Успенский писал, что математика и логика занимаются одним и тем же. Только математика во области чисел, а логика в области понятий
Математика - изучение (поиск) закономерностей в отношениях между числами
Логика - изучение (поиск) закономерностей в отношениях между понятиями
Эти определения отвечают как определению понятий "логика" и "математика", так и определению наук. А вот, если сказать - математика (логика) это наука о числах (мышлении), то мы указываем на предмет, которым занимаются математика (логика), но не даем им определения. Нужно обязательно выделить то, что они занимаются изучением закономерностей.
Болдачев не зря упомянул, что логика - это в основном о мышлении. Так оно и есть. Если мы видим логику, но не видим понятий, значит там нужно искать числа. Например логика в поведении людей, предметов, жидкости...
Поиск точных формулировок - заразная болезнь ))
В каком сочинении Петр Демьянович писал? Можно поближе познакомиться с текстом?
--
Спасибо за вопрос. Хоть кто-то интересуется великим гением )
http://fway.org/onlinelib/76--tertium-organum-/442----tertium-organum--18.html
Ссылка открылась. Спасибо.
--
Препоны на пути к консенсусу
У Вас логическая ошибка в рассуждении. Вы термин "субъектный" нечаянно подменили термином "субъективный".
Обратите на это внимание (разницу между терминами)!
Например, Элементарная диалектическая логика субъектная, а не субъективная.
Что это означает? В структуре совместного рассуждения присутствуют два субъекта (аргументатора). У каждого своя аксиоматика. Некоторые аксиомы противоречат.
Истинность локальная относительно субъектов совместного рассуждения: те высказывания, которые для одного субъекта истинные, для другого - ложные.
Проблема состоит в возможности достижения консенсуса между аргументаторами. Разрешение проблемы - в переходе от замкнутого на себя монолога к диалогу.
Но и переход к диалогу не настолько прост.
Для монолога как логической системы характерны три основные формы мысли: понятие, суждение, умозаключение.
При таком положении, диалог может свестись к "да - нет", "нет - да". Это тупик.
Поэтому возникает необходимость в расширении логического инструментария традиционной логики (утверждений и отрицаний) за счет дополнения вопросами, оценками и императивами.
--